Purpose
To compute the L-infinity norm of a continuous-time or
discrete-time system, either standard or in the descriptor form,
-1
G(lambda) = C*( lambda*E - A ) *B + D .
The norm is finite if and only if the matrix pair (A,E) has no
eigenvalue on the boundary of the stability domain, i.e., the
imaginary axis, or the unit circle, respectively. It is assumed
that the matrix E is nonsingular.
Specification
SUBROUTINE AB13DD( DICO, JOBE, EQUIL, JOBD, N, M, P, FPEAK,
$ A, LDA, E, LDE, B, LDB, C, LDC, D, LDD, GPEAK,
$ TOL, IWORK, DWORK, LDWORK, CWORK, LCWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOBD, JOBE
INTEGER INFO, LCWORK, LDA, LDB, LDC, LDD, LDE, LDWORK,
$ M, N, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
COMPLEX*16 CWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), DWORK( * ), E( LDE, * ),
$ FPEAK( 2 ), GPEAK( 2 )
INTEGER IWORK( * )
Arguments
Mode Parameters
DICO CHARACTER*1
Specifies the type of the system, as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
JOBE CHARACTER*1
Specifies whether E is a general square or an identity
matrix, as follows:
= 'G': E is a general square matrix;
= 'I': E is the identity matrix.
EQUIL CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the system (A,E,B,C) or (A,B,C), as follows:
= 'S': perform equilibration (scaling);
= 'N': do not perform equilibration.
JOBD CHARACTER*1
Specifies whether or not a non-zero matrix D appears in
the given state space model:
= 'D': D is present;
= 'Z': D is assumed a zero matrix.
Input/Output Parameters
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
P (input) INTEGER
The row size of the matrix C. P >= 0.
FPEAK (input/output) DOUBLE PRECISION array, dimension (2)
On entry, this parameter must contain an estimate of the
frequency where the gain of the frequency response would
achieve its peak value. Setting FPEAK(2) = 0 indicates an
infinite frequency. An accurate estimate could reduce the
number of iterations of the iterative algorithm. If no
estimate is available, set FPEAK(1) = 0, and FPEAK(2) = 1.
FPEAK(1) >= 0, FPEAK(2) >= 0.
On exit, if INFO = 0, this array contains the frequency
OMEGA, where the gain of the frequency response achieves
its peak value GPEAK, i.e.,
|| G ( j*OMEGA ) || = GPEAK , if DICO = 'C', or
j*OMEGA
|| G ( e ) || = GPEAK , if DICO = 'D',
where OMEGA = FPEAK(1), if FPEAK(2) > 0, and OMEGA is
infinite, if FPEAK(2) = 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
state dynamics matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E (input) DOUBLE PRECISION array, dimension (LDE,N)
If JOBE = 'G', the leading N-by-N part of this array must
contain the descriptor matrix E of the system.
If JOBE = 'I', then E is assumed to be the identity
matrix and is not referenced.
LDE INTEGER
The leading dimension of the array E.
LDE >= MAX(1,N), if JOBE = 'G';
LDE >= 1, if JOBE = 'I'.
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading P-by-N part of this array must contain the
system output matrix C.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,P).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
If JOBD = 'D', the leading P-by-M part of this array must
contain the direct transmission matrix D.
The array D is not referenced if JOBD = 'Z'.
LDD INTEGER
The leading dimension of array D.
LDD >= MAX(1,P), if JOBD = 'D';
LDD >= 1, if JOBD = 'Z'.
GPEAK (output) DOUBLE PRECISION array, dimension (2)
The L-infinity norm of the system, i.e., the peak gain
of the frequency response (as measured by the largest
singular value in the MIMO case), coded in the same way
as FPEAK.
Tolerances
TOL DOUBLE PRECISION
Tolerance used to set the accuracy in determining the
norm. 0 <= TOL < 1.
Workspace
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= K, where K can be computed using the following
pseudo-code (or the Fortran code included in the routine)
d = 6*MIN(P,M);
c = MAX( 4*MIN(P,M) + MAX(P,M), d );
if ( MIN(P,M) = 0 ) then
K = 1;
else if( N = 0 or B = 0 or C = 0 ) then
if( JOBD = 'D' ) then
K = P*M + c;
else
K = 1;
end
else
if ( DICO = 'D' ) then
b = 0; e = d;
else
b = N*(N+M); e = c;
if ( JOBD = Z' ) then b = b + P*M; end
end
if ( JOBD = 'D' ) then
r = P*M;
if ( JOBE = 'I', DICO = 'C',
N > 0, B <> 0, C <> 0 ) then
K = P*P + M*M;
r = r + N*(P+M);
else
K = 0;
end
K = K + r + c; r = r + MIN(P,M);
else
r = 0; K = 0;
end
r = r + N*(N+P+M);
if ( JOBE = 'G' ) then
r = r + N*N;
if ( EQUIL = 'S' ) then
K = MAX( K, r + 9*N );
end
K = MAX( K, r + 4*N + MAX( M, 2*N*N, N+b+e ) );
else
K = MAX( K, r + N +
MAX( M, P, N*N+2*N, 3*N+b+e ) );
end
w = 0;
if ( JOBE = 'I', DICO = 'C' ) then
w = r + 4*N*N + 11*N;
if ( JOBD = 'D' ) then
w = w + MAX(M,P) + N*(P+M);
end
end
if ( JOBE = 'E' or DICO = 'D' or JOBD = 'D' ) then
w = MAX( w, r + 6*N + (2*N+P+M)*(2*N+P+M) +
MAX( 2*(N+P+M), 8*N*N + 16*N ) );
end
K = MAX( 1, K, w, r + 2*N + e );
end
For good performance, LDWORK must generally be larger.
An easily computable upper bound is
K = MAX( 1, 15*N*N + P*P + M*M + (6*N+3)*(P+M) + 4*P*M +
N*M + 22*N + 7*MIN(P,M) ).
The smallest workspace is obtained for DICO = 'C',
JOBE = 'I', and JOBD = 'Z', namely
K = MAX( 1, N*N + N*P + N*M + N +
MAX( N*N + N*M + P*M + 3*N + c,
4*N*N + 10*N ) ).
for which an upper bound is
K = MAX( 1, 6*N*N + N*P + 2*N*M + P*M + 11*N + MAX(P,M) +
6*MIN(P,M) ).
CWORK COMPLEX*16 array, dimension (LCWORK)
On exit, if INFO = 0, CWORK(1) contains the optimal
LCWORK.
LCWORK INTEGER
The dimension of the array CWORK.
LCWORK >= 1, if N = 0, or B = 0, or C = 0;
LCWORK >= MAX(1, (N+M)*(N+P) + 2*MIN(P,M) + MAX(P,M)),
otherwise.
For good performance, LCWORK must generally be larger.
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the matrix E is (numerically) singular;
= 2: the (periodic) QR (or QZ) algorithm for computing
eigenvalues did not converge;
= 3: the SVD algorithm for computing singular values did
not converge;
= 4: the tolerance is too small and the algorithm did
not converge.
Method
The routine implements the method presented in [1], with extensions and refinements for improving numerical robustness and efficiency. Structure-exploiting eigenvalue computations for Hamiltonian matrices are used if JOBE = 'I', DICO = 'C', and the symmetric matrices to be implicitly inverted are not too ill- conditioned. Otherwise, generalized eigenvalue computations are used in the iterative algorithm of [1].References
[1] Bruinsma, N.A. and Steinbuch, M.
A fast algorithm to compute the Hinfinity-norm of a transfer
function matrix.
Systems & Control Letters, vol. 14, pp. 287-293, 1990.
Numerical Aspects
If the algorithm does not converge in MAXIT = 30 iterations (INFO = 4), the tolerance must be increased.Further Comments
If the matrix E is singular, other SLICOT Library routines could be used before calling AB13DD, for removing the singular part of the system.Example
Program Text
* AB13DD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 )
INTEGER LDA, LDB, LDC, LDD, LDE
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX, LDE = NMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX )
INTEGER LCWORK
PARAMETER ( LCWORK = ( NMAX + MMAX )*( NMAX + PMAX ) +
$ 2*MIN( PMAX, MMAX ) +
$ MAX( PMAX, MMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 15*NMAX*NMAX + PMAX*PMAX + MMAX*MMAX +
$ ( 6*NMAX + 3 )*( PMAX + MMAX ) +
$ 4*PMAX*MMAX + NMAX*MMAX + 22*NMAX +
$ 7*MIN( PMAX, MMAX ) )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INFO, J, M, N, P
CHARACTER DICO, EQUIL, JOBD, JOBE
* .. Local Arrays ..
INTEGER IWORK( LIWORK )
DOUBLE PRECISION A( LDA, NMAX ), B( LDB, MMAX ), C( LDC, NMAX ),
$ D( LDD, MMAX ), DWORK( LDWORK ), E( LDE, NMAX ),
$ FPEAK( 2 ), GPEAK( 2 )
COMPLEX*16 CWORK( LCWORK )
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL AB13DD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, FPEAK, TOL, DICO, JOBE, EQUIL, JOBD
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) M
ELSE IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) P
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( LSAME( JOBE, 'G' ) )
$ READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
IF ( LSAME( JOBD, 'D' ) )
$ READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
* Computing the Linf norm.
CALL AB13DD( DICO, JOBE, EQUIL, JOBD, N, M, P, FPEAK, A, LDA,
$ E, LDE, B, LDB, C, LDC, D, LDD, GPEAK, TOL, IWORK,
$ DWORK, LDWORK, CWORK, LCWORK, INFO )
*
IF ( INFO.EQ.0 ) THEN
IF ( GPEAK( 2 ).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99991 )
ELSE
WRITE ( NOUT, FMT = 99997 )
WRITE ( NOUT, FMT = 99995 ) GPEAK( 1 )
END IF
IF ( FPEAK( 2 ).EQ.ZERO ) THEN
WRITE ( NOUT, FMT = 99990 )
ELSE
WRITE ( NOUT, FMT = 99996 )
WRITE ( NOUT, FMT = 99995 ) FPEAK( 1 )
END IF
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' AB13DD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from AB13DD =',I2)
99997 FORMAT (/' The L_infty norm of the system is'/)
99996 FORMAT (/' The peak frequency is'/)
99995 FORMAT (D17.10)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' M is out of range.',/' M = ',I5)
99992 FORMAT (/' P is out of range.',/' P = ',I5)
99991 FORMAT (/' The L_infty norm of the system is infinite')
99990 FORMAT (/' The peak frequency is infinite'/)
END
Program Data
AB13CD EXAMPLE PROGRAM DATA 6 1 1 0.0 1.0 0.000000001 C I N D 0.0 1.0 0.0 0.0 0.0 0.0 -0.5 -0.0002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 -0.00002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -2.0 -0.000002 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0Program Results
AB13DD EXAMPLE PROGRAM RESULTS The L_infty norm of the system is 0.5000000001D+06 The peak frequency is 0.1414213562D+01