Purpose
To compute || Q^H Q - I ||_F for a complex matrix of the form
[ op( Q1 ) op( Q2 ) ]
Q = [ ],
[ -op( Q2 ) op( Q1 ) ]
where Q1 and Q2 are N-by-N matrices. This residual can be used to
test wether Q is numerically a unitary symplectic matrix.
Specification
DOUBLE PRECISION FUNCTION MA02JZ( LTRAN1, LTRAN2, N, Q1, LDQ1, Q2,
$ LDQ2, RES, LDRES )
C .. Scalar Arguments ..
LOGICAL LTRAN1, LTRAN2
INTEGER LDQ1, LDQ2, LDRES, N
C .. Array Arguments ..
COMPLEX*16 Q1(LDQ1,*), Q2(LDQ2,*), RES(LDRES,*)
Function Value
MA02JZ DOUBLE PRECISION
The computed residual.
Arguments
Mode Parameters
LTRAN1 LOGICAL
Specifies the form of op( Q1 ) as follows:
= .FALSE.: op( Q1 ) = Q1;
= .TRUE. : op( Q1 ) = Q1'.
LTRAN2 LOGICAL
Specifies the form of op( Q2 ) as follows:
= .FALSE.: op( Q2 ) = Q2;
= .TRUE. : op( Q2 ) = Q2'.
Input/Output Parameters
N (input) INTEGER
The order of the matrices Q1 and Q2. N >= 0.
Q1 (input) COMPLEX*16 array, dimension (LDQ1,N)
On entry, the leading N-by-N part of this array must
contain the matrix op( Q1 ).
LDQ1 INTEGER
The leading dimension of the array Q1. LDQ1 >= MAX(1,N).
Q2 (input) COMPLEX*16 array, dimension (LDQ2,N)
On entry, the leading N-by-N part of this array must
contain the matrix op( Q2 ).
LDQ2 INTEGER
The leading dimension of the array Q2. LDQ2 >= MAX(1,N).
Workspace
RES DOUBLE PRECISION array, dimension (LDRES,N)
LDRES INTEGER
The leading dimension of the array RES.
LDRES >= MAX(1,N).
Method
The routine computes the residual by simple elementary operations.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None