Purpose
To construct for a given state space system (A,B,C,D) the closed-
loop system (Ac,Bc,Cc,Dc) corresponding to the mixed output and
state feedback control law
u = alpha*F*y + beta*K*x + G*v
z = H*y.
Specification
SUBROUTINE AB05RD( FBTYPE, JOBD, N, M, P, MV, PZ, ALPHA, BETA, A,
$ LDA, B, LDB, C, LDC, D, LDD, F, LDF, K, LDK,
$ G, LDG, H, LDH, RCOND, BC, LDBC, CC, LDCC,
$ DC, LDDC, IWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER FBTYPE, JOBD
INTEGER INFO, LDA, LDB, LDBC, LDC, LDCC, LDD, LDDC,
$ LDF, LDG, LDH, LDK, LDWORK, M, MV, N, P, PZ
DOUBLE PRECISION ALPHA, BETA, RCOND
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), BC(LDBC,*), C(LDC,*),
$ CC(LDCC,*), D(LDD,*), DC(LDDC,*), DWORK(*),
$ F(LDF,*), G(LDG,*), H(LDH,*), K(LDK,*)
Arguments
Mode Parameters
FBTYPE CHARACTER*1
Specifies the type of the feedback law as follows:
= 'I': Unitary output feedback (F = I);
= 'O': General output feedback.
JOBD CHARACTER*1
Specifies whether or not a non-zero matrix D appears
in the given state space model:
= 'D': D is present;
= 'Z': D is assumed a zero matrix.
Input/Output Parameters
N (input) INTEGER
The dimension of state vector x, i.e. the order of the
matrix A, the number of rows of B and the number of
columns of C. N >= 0.
M (input) INTEGER
The dimension of input vector u, i.e. the number of
columns of matrices B and D, and the number of rows of F.
M >= 0.
P (input) INTEGER
The dimension of output vector y, i.e. the number of rows
of matrices C and D, and the number of columns of F.
P >= 0 and P = M if FBTYPE = 'I'.
MV (input) INTEGER
The dimension of the new input vector v, i.e. the number
of columns of matrix G. MV >= 0.
PZ (input) INTEGER.
The dimension of the new output vector z, i.e. the number
of rows of matrix H. PZ >= 0.
ALPHA (input) DOUBLE PRECISION
The coefficient alpha in the output feedback law.
BETA (input) DOUBLE PRECISION.
The coefficient beta in the state feedback law.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the system state transition matrix A.
On exit, the leading N-by-N part of this array contains
the state matrix Ac of the closed-loop system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the system input matrix B.
On exit, the leading N-by-M part of this array contains
the intermediary input matrix B1 (see METHOD).
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the system output matrix C.
On exit, the leading P-by-N part of this array contains
the intermediary output matrix C1+BETA*D1*K (see METHOD).
LDC INTEGER
The leading dimension of array C.
LDC >= MAX(1,P) if N > 0.
LDC >= 1 if N = 0.
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, if JOBD = 'D', the leading P-by-M part of this
array must contain the system direct input/output
transmission matrix D.
On exit, the leading P-by-M part of this array contains
the intermediary direct input/output transmission matrix
D1 (see METHOD).
The array D is not referenced if JOBD = 'Z'.
LDD INTEGER
The leading dimension of array D.
LDD >= MAX(1,P) if JOBD = 'D'.
LDD >= 1 if JOBD = 'Z'.
F (input) DOUBLE PRECISION array, dimension (LDF,P)
If FBTYPE = 'O', the leading M-by-P part of this array
must contain the output feedback matrix F.
If FBTYPE = 'I', then the feedback matrix is assumed to be
an M x M order identity matrix.
The array F is not referenced if FBTYPE = 'I' or
ALPHA = 0.
LDF INTEGER
The leading dimension of array F.
LDF >= MAX(1,M) if FBTYPE = 'O' and ALPHA <> 0.
LDF >= 1 if FBTYPE = 'I' or ALPHA = 0.
K (input) DOUBLE PRECISION array, dimension (LDK,N)
The leading M-by-N part of this array must contain the
state feedback matrix K.
The array K is not referenced if BETA = 0.
LDK INTEGER
The leading dimension of the array K.
LDK >= MAX(1,M) if BETA <> 0.
LDK >= 1 if BETA = 0.
G (input) DOUBLE PRECISION array, dimension (LDG,MV)
The leading M-by-MV part of this array must contain the
system input scaling matrix G.
LDG INTEGER
The leading dimension of the array G. LDG >= MAX(1,M).
H (input) DOUBLE PRECISION array, dimension (LDH,P)
The leading PZ-by-P part of this array must contain the
system output scaling matrix H.
LDH INTEGER
The leading dimension of the array H. LDH >= MAX(1,PZ).
RCOND (output) DOUBLE PRECISION
The reciprocal condition number of the matrix
I - alpha*D*F.
BC (output) DOUBLE PRECISION array, dimension (LDBC,MV)
The leading N-by-MV part of this array contains the input
matrix Bc of the closed-loop system.
LDBC INTEGER
The leading dimension of array BC. LDBC >= MAX(1,N).
CC (output) DOUBLE PRECISION array, dimension (LDCC,N)
The leading PZ-by-N part of this array contains the
system output matrix Cc of the closed-loop system.
LDCC INTEGER
The leading dimension of array CC.
LDCC >= MAX(1,PZ) if N > 0.
LDCC >= 1 if N = 0.
DC (output) DOUBLE PRECISION array, dimension (LDDC,MV)
If JOBD = 'D', the leading PZ-by-MV part of this array
contains the direct input/output transmission matrix Dc
of the closed-loop system.
The array DC is not referenced if JOBD = 'Z'.
LDDC INTEGER
The leading dimension of array DC.
LDDC >= MAX(1,PZ) if JOBD = 'D'.
LDDC >= 1 if JOBD = 'Z'.
Workspace
IWORK INTEGER array, dimension (LIWORK)
LIWORK >= MAX(1,2*P) if JOBD = 'D'.
LIWORK >= 1 if JOBD = 'Z'.
IWORK is not referenced if JOBD = 'Z'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= wspace, where
wspace = MAX( 1, M, P*MV, P*P + 4*P ) if JOBD = 'D',
wspace = MAX( 1, M ) if JOBD = 'Z'.
For best performance, LDWORK >= MAX( wspace, N*M, N*P ).
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrix I - alpha*D*F is numerically singular.
Method
The matrices of the closed-loop system have the expressions: Ac = A1 + beta*B1*K, Bc = B1*G, Cc = H*(C1 + beta*D1*K), Dc = H*D1*G, where A1 = A + alpha*B*F*E*C, B1 = B + alpha*B*F*E*D, C1 = E*C, D1 = E*D, with E = (I - alpha*D*F)**-1.Numerical Aspects
The accuracy of computations basically depends on the conditioning of the matrix I - alpha*D*F. If RCOND is very small, it is likely that the computed results are inaccurate.Further Comments
NoneExample
Program Text
* AB05RD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, MVMAX, PMAX, PZMAX
PARAMETER ( NMAX = 20, MMAX = 20, MVMAX = 20,
$ PMAX = 20, PZMAX = 20 )
INTEGER LDA, LDB, LDBC, LDC, LDCC, LDD, LDDC, LDF, LDG,
$ LDH, LDK, LDWORK, LIWORK
PARAMETER ( LDA = NMAX, LDB = NMAX, LDBC = NMAX,
$ LDC = PMAX, LDCC = PZMAX,
$ LDD = PMAX, LDDC = PZMAX, LDF = MMAX,
$ LDG = MMAX, LDH = PZMAX, LDK = MMAX,
$ LDWORK = MAX( MMAX, PMAX*MVMAX,
$ PMAX*PMAX + 4*PMAX ), LIWORK = 2*PMAX )
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* .. Local Scalars ..
LOGICAL LJOBD, OUTPF
CHARACTER*1 FBTYPE, JOBD
INTEGER I, INFO, J, M, MV, N, P, PZ
DOUBLE PRECISION ALPHA, BETA, RCOND
* .. Local Arrays ..
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), BC(LDBC,MVMAX),
$ C(LDC,NMAX), CC(LDCC,NMAX),
$ D(LDD,MMAX), DC(LDDC,MVMAX), DWORK(LDWORK),
$ F(LDF,PMAX), G(LDG,MVMAX), H(LDH,PMAX),
$ K(LDK,NMAX)
* .. External functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL AB05RD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, MV, PZ, ALPHA, BETA, FBTYPE, JOBD
OUTPF = LSAME( FBTYPE, 'O' )
LJOBD = LSAME( JOBD, 'D' )
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
IF ( BETA.NE.ZERO )
$ READ ( NIN, FMT = * ) ( ( K(I,J), J = 1,N ), I = 1,M )
IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
IF ( LJOBD )
$ READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
IF ( OUTPF.AND.ALPHA.NE.ZERO )
$ READ ( NIN, FMT = * ) ( ( F(I,J), J = 1,P ), I = 1,M )
IF ( MV.LE.0 .OR. MV.GT.MVMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) MV
ELSE
READ ( NIN, FMT = * )
$ ( ( G(I,J), J = 1,MV ), I = 1,M )
IF ( PZ.LE.0 .OR. PZ.GT.PZMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) PZ
ELSE
READ ( NIN, FMT = * )
$ ( ( H(I,J), J = 1,P ), I = 1,PZ )
* Find the state-space model (A,B,C,D).
CALL AB05RD( FBTYPE, JOBD, N, M, P, MV, PZ, ALPHA,
$ BETA, A, LDA, B, LDB, C, LDC, D, LDD,
$ F, LDF, K, LDK, G, LDG, H, LDH, RCOND,
$ BC, LDBC, CC, LDCC, DC, LDDC, IWORK,
$ DWORK, LDWORK, INFO )
*
WRITE ( NOUT, FMT = 99987 ) RCOND
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 )
$ ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99996 )
$ ( BC(I,J), J = 1,MV )
40 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 60 I = 1, PZ
WRITE ( NOUT, FMT = 99996 )
$ ( CC(I,J), J = 1,N )
60 CONTINUE
IF ( LJOBD ) THEN
WRITE ( NOUT, FMT = 99993 )
DO 80 I = 1, PZ
WRITE ( NOUT, FMT = 99996 )
$ ( DC(I,J), J = 1,MV )
80 CONTINUE
END IF
END IF
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' AB05RD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB05RD = ',I2)
99997 FORMAT (' The state transition matrix of the closed-loop system is
$')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The input/state matrix of the closed-loop system is ')
99994 FORMAT (/' The state/output matrix of the closed-loop system is ')
99993 FORMAT (/' The input/output matrix of the closed-loop system is ')
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
99989 FORMAT (/' MV is out of range.',/' MV = ',I5)
99988 FORMAT (/' PZ is out of range.',/' PZ = ',I5)
99987 FORMAT ( ' The reciprocal condition number of the matrix ',
$ ' I - alpha*D*F is',F8.4,/1X)
END
Program Data
AB05RD EXAMPLE PROGRAM DATA 3 2 2 2 2 1.0 1.0 O D 1.0 0.0 -1.0 0.0 -1.0 1.0 1.0 1.0 2.0 1.0 1.0 0.0 2.0 0.0 1.0 2.0 1.0 0.0 1.0 0.0 1.0 3.0 -2.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 2.0 3.0 4.0 1.0 1.0 0.0 1.0 4.0 3.0 2.0 1.0Program Results
AB05RD EXAMPLE PROGRAM RESULTS The reciprocal condition number of the matrix I - alpha*D*F is 0.2000 The state transition matrix of the closed-loop system is -4.8333 0.1667 -2.8333 -0.8333 0.1667 0.1667 -1.5000 0.5000 1.5000 The input/state matrix of the closed-loop system is -0.5000 -0.8333 0.5000 0.1667 -0.5000 -0.5000 The state/output matrix of the closed-loop system is 1.1667 -1.8333 -0.8333 1.8333 -1.1667 -0.1667 The input/output matrix of the closed-loop system is 0.5000 -0.8333 0.5000 -0.1667